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ABSTRACT

The simulation of spacecraft attitude dynamics and control using the

generic, multi-body code called TREETOPS and other codes written especially

to simulate particular systems is discussed. Differences in the methods

used to derive equations of motion--Kane's method for TREETOPS and the

Lagrangian and Newton-Euler methods, respectively, for the other two codes--

are considered. Simulation results from the TREETOPS code are compared with

those from the other two codes for two example systems. One system is a

chain of rigid bodies; the other consists of two rigid bodies attached to a

flexible base body. Since the computer codes were developed independently,

consistent results serve as a verification of the correctness of all the

programs. Differences in the results are discussed. Results for the two-

rigid-body, one-flexible-body system are useful also as information on

multi-body, flexible, pointing payload dynamics.

INTRODUCTION

Since the launch of Explorer I and the realization, based on its

I
anomalous attitude time history, that a spacecraft generally could not be

considered a rigid body, the field of spacecraft attitude dynamics and

control has developed to the point that many methods of analysis2'3'4'5'6and

numerous attitude dynamics and control simulation codes 7'8'9' are now

available. The volume of literature in the area of spacecraft attitude

dynamics is great enough that we will not attempt to review even the part

more directly concerned with multibody spacecraft. The purpose of this

paper is merely to consider some methods for developing equations of motion

for multi-body spacecraft and to compare results obtained from a rather

general digital simulation code called TREETOPS 8 with those from simulations

which are model-specific.

First, we will consider the use of the Newton-Euler method, the

Lagrangian method with quasi-coordinates 10'll and Kane's method 4 for

deriving equations of motion for botk rigid and flexible multi-body

spacecraft models. Second, we will discuss, briefly, the computer codes

used to obtain comparative results. Third, we will present some examples of

results obtained from the computer codes.
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METHODS FOR DERIVING EQUATIONS OF MOTION

To illustrate the use of the three methods for deriving equations of

motion, we adopt the simple two-body model shown in Fig. I. Our motivation

for doing this is that a chain configuration will be considered in the

examples. Body BI, of mass ml, is rigid and body B2, of mass m2, is either

rigid, or flexible, at our convenience. The bodies have centers of mass of

C I and C2, respectively, and move with respect to an inertial frame N in

which a dextral, orthogonal coordinate system, OXYZ, with its associated
A

unit vectors nj, j-1,2,3, is fixed. Body B_ has a centroidal inertia dyadic

_j. For body BI, _I is constant. If we decide that B 2 is rigid, _2 is also

constant. But, generally, _2 varies with time when B 2 is flexible.

01

X

Fig. 1 Two-body system for example.

We let Rj denote the position vector from 0 to Cj, pj the vector from

Cj to an arbitrary element of mass dmj in body Bj when that body is

undeformed and uj denote the displacement of dmj from the position it

Occupies when body Bj is deformed. In addition, we let _j denote the

angular velocity of a coordinate system, Cjxjyjzj, in body Bj. For j-l, the

C1XlYlZ I coordinate system is fixed in B I. For J-2, we may let the C2x2Y2Z 2

system be such that I _2_2dm2 (where _2 is the skew-symmetric matrix
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counterpart of u2x) is diagonal, or some other condition can be used to

2

define the orientation of C2x2Y2z 2 in B 2.

n

For convenience, we let u 2 ffi 7, _kqk , where the -_k are modal vectors
k=l

and are functions of the undeformed coordinates of dm 2.

Newton-Euler Equations

The Newton-Euler method is to write equations for the translation and

4
rotation of each body subject to external, or active, forces and moments

and forces and moments of constraint.

For body j, if F. and F are, respectively, the external force on-je jc

body j and the constraint force,

m.R. -- F. + F. , j = 1,2, (I)
j-] -]e -jc

Also, for body I, if _le and _Ic are the external moment and constraint

moment, respectively, we have,

+ x " -M1e+ -M1c (2)

The equations of motion for body B 2 are somewhat different, of course,

if it is flexible. First, to obtain an independent equation for each q_, we

may take the fundamental equation for the acceleration of dm2,

(_2 + _2 + _2)dm2 " df2 ' (3)

where df2 is the force on dm2, expand 22 and Q2' dot multiply by _ and

integrate over the mass of the body to get

I _dm2._2 ffi_2"I_x[(P2 + u2)x _2]dm2

- I[_x(P2 + u2)]dm2"_2

I 0- 2 _p_x u 2 dm2.__ 2

-I_'__2 dm2 " I__9"clf 2 (4)
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where u 2 and -_2 are the time derivatives of _u2 in the coordinate system

C2x2Y2Z 2 . Here,

contains contributions due to the external forces on B 2. Also, if _ is not

compatible with the constraints, then 9t will contain terms due to the

constraint forces.

An equation for the rotational motion of B 2 is also required. To find

one, we may cross _2 + _2 into Eq. (4) and integrate over the mass of B 2 to

get

- 2 [ (e2+u2) x(_2x_2)dm 2

- I (_2+_2) x _2 dm2

" I (_2+_2) x dr2 = _2e + _2c (6)

If B 2 is rigid, we can reduce Eq. (6) to

_2"_2 + _2x!2"_2 " _2e + _2c (7)

We will consider that B 1 and B 2 are coupled together with a hinge which

allows rotation of B 2 with respect to B 1 with three degrees of freedom. In

such a case, we can consider _Ic " - _2c to be a function of state variables

such as the components of _2/I " _2 - _I and the angles used to describe the

relative rotational motion.

The constraint force F1 c -- F2 c can be found by subtracting the first

of Eqs. (I) from the second and simplifying, i.e.,

1

FIc " 2 (-Fle- F2e - m2 -_2 + ml -_I) (8)

From Eq. (8) and Eqs. (I) we can obtain verifications of the well known fact

that the center of mass of the system, C, moves according to

1

- _ (Fie + Z2e) (9)
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where R - (miR I + m2R2)/M and M - m I + m 2.

Equations (2), (4), (6) and (9) define the motion except for that of

C2. One way to get an equation for the motion of C 2 is to write (see

Fig. 2)

m2c 2 + mlc I -

and

$1 - $2 =- _1 - _2

(10)

(II)

0

Fig. 2

Then, since

[2 " I (_2 + _2)dm2

and from Eq. (I0),

Position vectors.

(12)
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_I = - (m21ml)_2' (z3)

we find that

M/m! _2 " _1 + J" I(_2 + _2)dm2 (14)
m2

Our dependent variables are R, R, QI' _2' the qk' k=l,2,...,n, and suitable

orientation variables for B! and the relative angular orientation of B 2 with

respect to B I.

LagranEe's Method

An ad hoc procedure based directly on Newton's equations of motion is

not as attractive to many analysts as one which Includes a "recipe" for

obtaining the desired result. For complex dynamical systems subject to

holonomlc constraints a modification of Lagrange's method often leads more

easily, or at least more directly, to equations of motion which are first

order in the derivatives of "quasl-coordlnates." The quasi-coordinates are

introduced by Whittaker by homogeneous differential forms in generalized

coordinates. For our example, we can take as generalized coordinates 81j

and 82j , j-1,2,3, Euler angles which define the attitude of B I with respect

to the OXYZ system and the attitude of B 2 with respect to BI, respectively,

the qj, J-l,2,...,n, associated with the vibrational modes and the

coordinates of the center of mass of B i and B 2. Then, for convenience, we

define

g* " (Xl YI Zl X2 Y2 Z2 ell 812 813 821

022 023 ql q2 "'" qn )T (15)

An N=I2 + n vector of quasl-coordlnates, _, can be defined by

d_ - A d_* (16)

where A is a non-slngular NxN matrix of functions of the q_, k-!,2,...,N,

and possibly the time.

In particular, the _k can be chosen so that

d"7/dt

_l = d_81dt

d_9/dt

(17)
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and

-Q2

d_101dt

d_ll/dt

d_121dt

(18)

The other _k may be identical to the other original generalized coordinates,

or we may take

dnl/dt " XI

d_21dt = Y1

d_31dt = ZI

(19)

X

and use Eqs. (I0)-(14) to write the components of the vector r = x12 11 +

^

Y12 _I + z12 kl from C I to C 2 in terms of the Euler angles 82j and the qk"

This equation would be a vector (3xl) holomonic constraint.

Lagrange's equations using the q_ are, in matrix form,

d___[aT_2__l _ a_ = QT
dt aq* aq* - '

where T is the kinetic energy of the system and g is an N vector of

generalized forces.

If we let

Q = d_/dt

and

-I
B - A ,

then Eqs. (20) may be transformed into

d aT -aT- T aT DT . N T
+ t jc - _ ,

(20)

(21)

(22)

(23)
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where T is expressed using 8 and q*, C and D are NxN matrices, and N is a

generalized force matrix. For a _ _ body of mass m I centroidal

inertia dyadic !I and center of mass velocity V-I '

T - I12 gt'!"Si + I12 miv-I.V-t

Or, in matrix form, body-fixed basis, we have

T T [i= i/2 81 !i 81 + I/2 mlv I

Thus, if we let _T (Q T V T) ,

J 0

0 mlI

n

where I is the 3x3 identity matrix and J is the inertia matrix, then

8__ . QT
aQ

J 0

0 mlI

(24)

(25)

(26)

(27)

Note that 8TISQ does not contain the q_, explicitly, and

J 0

0 mlI

In this case, we have

C i

and

F

N =

M

(28)

(29)

(30)
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For the two-body example, we get a matrix equation of the form

M !i = N_
(31)

Kane's Method

Kane's method for deriving equations of motion is based on the use of

"partial velocities and partial angular velocities" (see Ref. 4, pp. 87-90

and Chapter Four) to extract from Newton's equations of motion a sufficient

set of equations of motion in terms of chosen variables, the so-called

"generalized speeds" and and finding partial coordinates. Kane's procedure

for a system of N particles with n degrees of freedom consists of (I)

choosing generalized speeds, generalized velocities and partial angular

velocities; (2) writing _i' the resultant force on each particle, mi, in the

system; (3) writing the acceleration, _i' i-l,2,...n; (3) dotting each of

the partial velocities (Vr) in turn, into [i - mini " _ and summing over the

particles. The basic equation used is

where

F + F* = 0 (r=1,...,n) , (34)
r r

N

F = 7, V .R. (r-l,2,...,n) (35)
r -r -i

i=l

are the generalized active forces and

N

F*r = 7, Vr'(-mia i) (r-l,2,...,n) (36)
i=l

are the generalized inertia forces.

For our two-body example, we may use the equations,

A A A

--o li + + ng,3_kg,, 9,-1,2, (37)

A ^

_V = X n I + "_ n 2 + Z n 3 (38)
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and

n n

-u2 = Z _k qk + -Q2 X Z _-k qk '
k=l k=l

(39)

where

-_k = Ckl -i2 + _k2 !2 + ¢k3 k2 ' (4O)

^

to identify the partial velocities _r' r=1,2,3, of C; partial angular

^ A ^ ^

velocities !_'!_'_' _=1,2, of Body _; and the partial velocities _kli2,

^ ^

_k2J 2 and _k3k2, k=l,2 ..... n, of the elements of B 2 due to deformation.

By writing the acceleration of an element in each boedy, as we did in

the Newton-Euler method, we can obtain the V to substitute into Eq. (36).
-r

The equations are basically the same in form as those found using the

Newton-Euler method. However, the procedure is well defined rather than ad

hoc.

COMPUTER CODES

Four digital computer programs for simulating multi-body dynamics have

been used to obtain the results which follow. There is a model-specific

program written to simulate the system shown in Fig. 3. The three-body

satellite (actually a sounding rocket payload 12) consists of a rigid body to

12
which are attached two booms carrying sphere. Equations of motion were

obtained directly from Newton's laws and programmed in a special code.

I0
A second program called MBODY was developed to model a chain of rigid

bodies. The equations for this more general model were derived using

Lagrange's equation with quasi-coordinates.

TREETOPS, the third program to simulate example systems, is based on

equations of motion obtained by applying Kane's method. The latest version,

which apparently is still in the development stage, contains rather general

models of flexible bodies interconnected in a tree topology and of active

control elements.

TREETOPS is intended to be useful control system analysis tool.

A fourth program, called FMBODY, has been developed along the same

lines as MBODY to handle flexible as well as rigid bodies. This code has

not been fully checked out, but some results from it are included in the

next section.
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EXAMPLES

Simulation results for several example spacecraft models have been

generated using MBODY, TREETOPS, the model-speclfic code and FMBODY.

Results for three spacecraft models are presented here.

The first model, depicted in Fig. 3, consists of a rigid body and two

rigid booms. Physical data for the model, which is intended to represent

12
the SPEAR-I sounding rocket payload, are given in Table I.

Table I. Physical Characteristics of Model I.

i. Main Body

Mass: 300 kg

Moments of Inertia:

2
I - I00 kg-m
xx

2
I = 400 kg-m
YY

2
I = 400 kg-m
zz

Distance from Boom Attachment Point to

Center of Mass of Main Body: 6 m

2. Booms

Length: 2 m

Moments of Inertia (Rods Neglected):

I = I - I
xx yy zz

2
: I0 kg-m

Table 2 gives the initial conditions for two cases in which the booms

rotate from positions parallel to the main body's axis of symmetry toward

orientations in which booms are perpendicular to the symmetry axis. In both

cases, the system is initially spinning about its symmetry axis and the

external torque is zero throughout the motion. In Case I, the deployment is

symmetric, since the booms initially have equal and opposite angular

velocities with respect to the main body. In Case II, the booms start with

different magnitude relative angular rates.

Figure 4 shows the spin rate (QII) time history for Case I. Although

it is not representative of an actual deployment, the booms rotate through

approximately 190 deg in 5 s. The results for the SPECIAL PROGRAM and MBODY

are in exact agreement. The _II from TREETOPS begins to disagree with the

other results at around 2.5 s, but the values at t - 5 s, all look the same.
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The same characteristic is seen in the deployment rate time histories shown

in Fig. 5. The small differences in the TREETOPS results are reflected in

CASE I:

CASE II:

Table 2. Initial Conditions for Example I Results

Main Body Spinnlng/Symmetric Deployment of Booms

_i(0) = (90 0 0) T deg/sec

O2/I(0) = (0 0 I0) T deg/sec

O3/i(0) = (0 0 -I0) T deg/sec

Main Body Spinning Asye_netric Deployment of Booms

Ol(0) - (90 0 0) T deg/sec

O2/1(0) - (0 0 10) T deg/sec

O3/1(0) - (0 0 -5) T deg/sec

the plot of H, the magnitude of the angular momentum of the system about its

center of mass, versus time shown in Fig. 6. The reasons for the small

variations in H have not been determined, but it is conjectured that they

are due to lack of numerical precision or the way in which constraints are
enforced.

Case II is an asymmetric deployment of the booms. The results for

spin rate (O11) are similar (see Figs. 7 and 8) to those for Case I and

again there is some difference in the results from MBODY and the Special

Program and TREETOPS. The difference is more evident in the results for H

given in Fig. 9.

Example 2

The model for the second example is a uniform flexible beam to which

two rigid bodies are coupled. Figure I0 shows the geometry of the system

and Table 3 gives the values of system constants used to obtain the

numerical results. This model is intended to represent a simple multi-body

pointing spacecraft. Bodies B2 and B3 are those which are to be pointed.

The base body, BI, Is flsxlbls and, for the purposes of this example is

uncontrolled. Only two mode shapes were used in this example. The motion

of the system is described by the inertial position of the center of mass of

B 1 , the attitude of B 1 (eli, j-1,2,3), the attitudes of B 2 and B 3 with

respect to B 1 (e2j and e3j, j-1,2,3) and the generalized coordinates qk'

k=1,2,3,4.
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The system is initially quiescent. At t-O, torques are applied to B2

and B 3 about axes parallel to the y-axle and passing through the points of

attachment of B 2 and B3, respectively.

The time histories of the angles ej3, J=1,2,3, are shown in Fig. 11.

Figure 12 shows the time history of the two non-zero generalized coordinates

qll and q12' for deformation in the x-direction. As expected, the base body

rotated clockwise around the y-axis. It also translated in the z-direction.

Results from TREETOPS for this example have not been obtained as of

this writing since a new version of TREETOPS was installed recently on a VAX
785 at Auburn University and a few problems have not been resolved.
Additional results will be available soon.

Table 3. Physical Characteristics of Model for Example 2.

Body I

Mass: 500 kg

Moments of Inertia: Stiffness Characteristics:

Ixx = 4333.33 kg-m 2 EI - I00 N-m 2 ,

2
I - 4333.33 kg-m Uniform
YY

I - 333.33 kg-m2-
zz

Dimensions:

a - b - 2 m, c = I0 m

d- Im, h= 2m

d I - d 2 - I m

Bodies 2 and 3

Mass: 100 kg

Moments of Inertia:

2
I = 12.5 kg-m

xx

I
YY

2
= 39.6 kg-m

2
I = 39.6 kg-m
zz

Dimensions:

d= Im I h=2m
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CONCLUSIONS

Methods for deriving equations which mathematically model multi-body

pointing spacecraft have been discussed. None of the three methods

considered appear clearly superior from both the aspects of understanding

the system and generating equations.

Results obtained using the model-specific code, based on Newton-Euler

equations, and MBODY, based on equations derived using Lagrange's equations

and quasi-coordinates, agree to within the numerical precision used. Thus,

both of these programs are probably correct. The TREETOPS results differ

slightly, but probably not significantly, from those obtained from the model

specific code and MBODY. The reason for a non-constant computed angular

momentum magnitude may lie in the method for computing the angular momentum.

Addition of checking needs to be done to determine the exact course.

For the multi-body pointing spacecraft example, we obtained, and have

presented here, results from a program, FMBODY, based on equations derived

using Lagrange's equations with quasi-coordinates and flexible body model

data. We were not able by the time this paper was submitted to get results

from a new, updated TREETOPS program. However, it is expected that we will

find that TREETOPS and FMBODY results agree and that TREETOPS requires less

CPU time.
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